
J. Fluid Mech. (2000), vol. 420, pp. 201–223. Printed in the United Kingdom

c© 2000 Cambridge University Press

201

Thermal generation of Alfvén waves
in oscillatory magnetoconvection
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Marginal convection in the form of Alfvén waves in an electrically conducting
Bénard layer in the presence of a vertical magnetic field is investigated analytically
using the Boussinesq model for the fluid. Small amplitude solutions are studied
using the linearized magnetoconvection equations. These solutions are represented
by double expansions in terms of two small parameters: a dimensionless viscosity
and a dimensionless magnetic diffusivity. The leading-order problem corresponds to
undamped Alfvén waves propagating between the boundaries of the fluid; buoyancy
forces appear at higher order and can maintain the Alfvén waves against viscous and
ohmic damping. The structure of the Alfvén waves is strongly dependent, even at
leading order, on the physical nature of the walls. Four different types of boundary
conditions are considered here: (A) illustrative, i.e. mathematically simple conditions,
(B) solid, perfectly conducting walls, (C) vacuum external to the layer, and (D) solid,
perfectly insulating walls. It is shown how in each case Alfvén waves are excited by a
small, but sufficiently strong, thermal buoyancy but that, because of boundary layers,
the solutions for the four sets of boundary conditions are very different.

1. Introduction; basic equations
One of the classical problems of magnetohydrodynamics (MHD) is that of convec-

tion in a plane horizontal layer of an electrically conducting Boussinesq fluid across
which a vertical magnetic field is applied. The linear stability problem was first studied
by Thompson (1951) and later by Chandrasekhar (1952), who summarized the theory
in Chapter 3 of his well-known book (Chandrasekhar 1961, which we shall refer to
herein as C61).

Since C61 was published, the theory has been developed in a number of ways,
especially through the inclusion of compressibility, finite-amplitude effects and even
transition to turbulence. See for example Hurlburt et al. (1989) and Nordlund, Gals-
gaard & Stein (1993). Very often the main motivation has been to understand better
magnetoconvection in the Sun and lower main sequence stars, and usually the bound-
ary conditions that are mathematically the simplest have been employed. These are
sometimes called the ‘standard boundary conditions’, e.g. see Blanchflower, Rucklidge
& Weiss (1998). We shall refer to them as ‘illustrative boundary conditions’. When
these are used, the eigenfunctions of the linear stability problem are simple trigono-
metric functions and the Rayleigh number at which convection is marginally possible
is a simple algebraic expression in terms of the wavenumber and the parameters
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defining the fluid; there are no boundary layers no matter how strong the applied
vertical magnetic field B0 is.

This situation must be regarded as exceptional. For example, it is well known
that Hartmann layers arise on no-slip boundaries when B0 is large. These boundary
layers exert a long-range effect on solutions far from the boundaries. Not surprisingly
therefore quantities such as the marginal Rayleigh number may be drastically different
from their values for the illustrative boundary conditions. This is established below,
along with analogous results for other boundary conditions.

A second objective of this paper is to study magnetoconvection in parameter ranges
in which the role of Alfvén waves is exhibited in the clearest possible way. We shall
therefore concentrate on situations in which these waves are only lightly damped;
more precisely, we shall suppose that

ην ≡ ν/Vd� 1, (1.1)

ηλ ≡ λ/Vd� 1, (1.2)

where ν is the kinematic viscosity of the fluid, λ is its magnetic diffusivity, d is the
depth of the layer, V = B0/

√
µρ is the Alfvén speed, µ is the magnetic permeability

and ρ is the fluid density; SI units are used. As a result of (1.1) and (1.2), oscillatory
convection takes the form of Alfvén waves propagating between the boundaries,
lightly damped viscously and ohmically, but refreshed by the buoyancy provided by
heating the layer at its bottom boundary

(
z = − 1

2
d
)

and cooling it at its top boundary(
z = 1

2
d
)
.

It is appropriate here to introduce other dimensionless numbers. The third diffusivity
that arises is κ, the thermal diffusivity, which is given dimensionlessly by

ηκ ≡ κ

Vd
, (1.3)

and which is assumed to be O(1). The three η-parameters are closely related to the
usual Prandtl numbers:

Pr =
ν

κ
=
ην

ηκ
, Pm =

ν

λ
=
ην

ηλ
, Pq =

λ

κ
=
ηλ

ηκ
. (1.4)

We shall not employ the Hartmann number

M =
Vd√
νλ

=
1√
ηνηλ

=
1

ηλP
1/2
m

, (1.5)

or the Chandrasekhar number Q = M2. As a measure of the temperature gradient,
β, across the layer we shall use

R =
gαβd2

V 2
, (1.6)

where α is the coefficient of volume expansion and g is the acceleration due to gravity.
The Rayleigh number more usually employed is gαβd4/νκ = R/ηνηκ; see C61, (105)
of Chap. 2.

To realize our second objective, it is convenient to depart slightly from the tradi-
tional non-dimensionalization of the governing equations; see C61, Chap. 3, (118).
We use

t→ (d/V )t, x→ xd, u→ Vu, B → B0B, T → Tβd, (1.7)

where u is fluid velocity, B is magnetic field and T is temperature; the unperturbed
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state is u = 0, B = 1z and ∇T = −1z where 1z is the unit upward vector. The
perturbations in B and T away from this state will be written as b and θ. The unit
of energy dissipation per unit time (and per unit horizontal area of the layer) is ρV 3.
In C61, Chap. 3, the linear equations governing θ, u, b and the pressure perturbation
were reduced to scalar equations for θ, the vertical velocity w (our uz) and hz (our
bz). We shall use instead θ, φ and h where

u = ∇× ∇× (φ1z), b = ∇× ∇× (h1z), (1.8)

so that w and hz are our −∇2
Hφ and −∇2

Hh, where ∇H is the horizontal divergence.
(Perturbations in vertical vorticity and vertical electric current are excluded automat-
ically in (1.8). It is easily shown that, even if these are initially present, they will
disappear as t → ∞, since they have no energy source to maintain them against
viscous and ohmic losses.)

The basic equations are now(
∂

∂t
− ην∇2

)
∇2φ = ∇2 ∂h

∂z
− Rθ, (1.9)

(
∂

∂t
− ηλ∇2

)
h =

∂φ

∂z
, (1.10)(

∂

∂t
− ηκ∇2

)
θ = −∇2

Hφ. (1.11)

On seeking normal mode solutions of the form

φ(x, y, z, t)→ φ(z) exp [i(kxx+ kyy − ωt)], etc., (1.12)

in the usual way, we obtain(
D2 − a2 − iω

ην

)
(D2 − a2)φ = − 1

ην
(D2 − a2)Dh+

R

ην
θ, (1.13)

(
D2 − a2 − iω

ηλ

)
h = − 1

ηλ
Dφ, (1.14)(

D2 − a2 − iω

ηκ

)
θ = −a

2

ηκ
φ, (1.15)

where a = (k2
x + k2

y)
1/2 is the total horizontal wavenumber and D = d/dz cf. C61,

Chap. 3, (119)–(121). Without loss of generality we may assume that Re(ω) > 0.

2. Boundary conditions
Equations (1.13)–(1.15) define an eighth-order system of ordinary differential equa-

tions. When its solutions are subjected to eight boundary conditions it defines an
eigenvalue problem for ω. A marginal state is defined as the smallest value of R
for given a for which Im(ω) = 0. If Re(ω) is also zero, the marginal state is steady;
otherwise it is oscillatory. The critical state is the marginal state with the smallest R
as a function of a. The eight boundary conditions, four at z = − 1

2
and four at z = 1

2
,

depend on the physical nature of the walls and what lies beyond them.
It is usual to suppose that the boundaries are perfect thermal conductors on which
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T can adjust instantaneously to the temperatures at which they are held. It then
follows that

θ = 0 at z = ± 1
2
. (2.1)

Consider next conditions placed on b by electromagnetic theory. If the exterior of
the fluid is free space or is a solid dielectric, there are no currents flowing in it, and
therefore ∇2h = 0 so that, in z > 1

2
(say),

h(z) = A e−az, (2.2)

for some constant A. Since b is continuous it follows that

Dh± ah = 0 at z = ± 1
2
, (2.3)

where we have also included the corresponding condition on z = − 1
2
. A popular

alternative to (2.3) supposes that the walls are perfect electrical conductors. Strictly
speaking this idealization can be used only for oscillatory convection, and then only if
the electromagnetic penetration depth, δw = (ηwλ /ω)1/2, is small compared with unity,
where ηwλ refers to the walls (Gibson 1966). If the upper boundary is a solid, b is
essentially zero for z − 1

2
> δw , so that (since bz must be continuous)

h = 0 at z = ± 1
2
. (2.4)

In general Dh and therefore b are not continuous; there are surface currents on the
walls.

Finally consider u. If the boundaries are fixed solids, u is zero on them, and by (1.8)

φ = Dφ = 0 at z = ± 1
2
. (2.5)

A popular alternative to (2.5) is to assume that there is no exchange of momentum
between fluids and walls, the so-called ‘stress-free’ conditions. Suppose the exterior
z > 1

2
of the layer is free space. The convective motions infinitesimally distort the

boundary so that it is no longer flat. Usually the frequency of surface gravity waves
on the free boundary greatly exceeds the reciprocal of the characteristic convective
time scales such as 1/ω. In this case, the condition that the normal component of
stress should be continuous reduces to φ = 0, i.e. the distortions of the boundary are
negligible. The total tangential component of stress on the boundary is the sum of the
tangential components of the viscous and magnetic stresses, but since b is continuous
the magnetic stresses are automatically continuous. Free space provides no viscous
stress, so we simply have D2φ = 0. In short

φ = D2φ = 0 at z = ± 1
2
. (2.6)

There are a number of different situations of interest.
Case A: The illustrative boundary conditions:

φ = θ = 0, D2φ = Dh = 0 at z = ± 1
2
. (2.7a–d )

Case B: The boundaries are stationary perfect conductors:

φ = θ = 0, Dφ = h = 0 at z = ± 1
2
. (2.8a–d )

Case C: Beyond the boundaries is free space:

φ = θ = 0, D2φ = Dh± ah = 0 at z = ± 1
2
. (2.9a–d )

Case D: The boundaries are stationary insulators:

φ = θ = 0, Dφ = Dh± ah = 0 at z = ± 1
2
. (2.10a–d )
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Conditions A, (2.7), are the simplest and therefore the most popular boundary
conditions to apply. Condition (2.7d) is the special case (when the toroidal field
vanishes) of the more general demands

Bx = By = DBz = 0 at z = ± 1
2
, (2.11a–c)

where strictly (2.11c) is superfluous, since it follows from (2.11a), (2.11b) and ∇·B = 0.
Conditions (2.11a)–(2.11c) and corresponding statements for spherical geometry are
commonplace in studies of magnetoconvection and fluid dynamos, especially in
astrophysical and solar contexts; see for example Gilman & Miller (1981), Hurlburt
et al. (1989), Wang, Sheeley & Nash (1991) and Kageyama et al. (1995). Conditions C
are applicable also when a light, perfectly insulating fluid fills the exterior of the layer.
Conditions A–D by no means exhaust all possibilities. It has been argued (e.g. Parker
1974) that Alfvénic radiation from a sunspot umbra is significant, and to model this it
is necessary to make the upper boundary transparent to Alfvén waves. This has been
done by linking convection in the unstable layer to motions in an overlying neutrally
stable region; see Musman (1967) and Savage (1969).

When the convection is steady, the magnetic conditions (2.7d), (2.8d), (2.9d) and
(2.10d) have little significance. This is because, when ω = 0, the system (1.13)–(1.15)
factorizes into a sixth-order problem, consisting of (1.15) together with

(D2 − a2)2φ =
1

ηνηλ
D2φ+

R

ην
θ, (2.12)

and the second-order problem (1.14). Once (1.15) and (2.12) have been solved, which
is done without reference to the conditions on h, the eigenvalue R is known and one
need not return to (1.14) to find h. We shall focus here on oscillatory convection,
for which the eighth-order problem does not factorize and for which a boundary
condition on h is required.

In what follows we shall ignore situations in which one of A, B, C or D applies
on z = 1

2
and a different one on z = − 1

2
. We shall analyse Cases A, B, C and D

in §§ 3, 4, 5 and 6, respectively. The paper concludes (§ 7) with a few remarks and a
summary.

3. Case A: illustrative boundary conditions
Conditions (2.7a)–(2.7d) are commonly used in studies of magnetoconvection in

the Sun, where many physical processes operate that complicate the modelling con-
siderably. One difficulty arises from the transition from the main convection zone to
the solar atmosphere. This is often evaded by the simple expedient of introducing an
upper (‘cut-off’) boundary at some convenient level in the upper convection zone; see
e.g. Gilman & Miller (1981) and Glatzmaier (1984). The question of what boundary
conditions should best be applied on that boundary is not easily answered, but the
general perception is that the illustrative conditions can be adopted because other
boundary conditions should (a) give qualitatively identical results, and (b) introduce
quantitative differences that are insignificant in comparison with the consequences
of other idealizations inherent in the model. Examples of the complications of mod-
elling solar magnetoconvection include the influence of the upper cut-off and the
concomitant alteration in layer depth (see § 3 of Nordlund et al. 1994), the effects of
radiative transfer (Steiner et al. 1994), variations in opacity in the convection zone,
assumptions made about the applied magnetic field (if not dynamo created), and
so on.
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As noted in § 2, condition (2.7d) implies (2.11a)–(2.11c), i.e. that the magnetic field is
vertical on the wall. There is some observational support for this (see e.g. conclusion
10 of Howard & Labonte 1981), and it is sometimes suggested that magnetic buoyancy
is responsible. This has not, to our knowledge, been established theoretically, and to
attempt a demonstration here would require us to change our model fundamentally
by introducing compressibility and by analysing how the region above the convecting
layer could be represented by a boundary condition on the upper boundary of the
layer. The resulting complications would blur our principal message that boundary
layers can create substantial changes to the asymptotic laws that hold in their absence.
While the Sun provides one of the main applications of magnetoconvection theory,
its study lies far beyond the scope of this paper, which is concerned with filling a
substantial gap in general magnetoconvection theory that has existed for the last four
decades.

Chandrasekhar derived (2.3) and (2.4) in C61, Chap. 3, § 42(b), but condition
(2.7d) did not arise. This is not surprising. If we disregard (2.11a)–(2.11c) because of
their uncertain theoretical status in solar magnetoconvection (a topic not addressed
in C61, Chap. 3), there is no context in which (2.7d) is even approximately true.
Nevertheless, (2.7d) was basic to the analysis in C61, Chap. 3, § 46. The reason for
this appears to have been mathematical expediency. Conditions (2.7a)–(2.7d) lead to
simple eigenfunctions such as

φ ∝ cos πz, h ∝ sin πz, θ ∝ cos πz, (3.1)

and to simple algebraic expressions for ω2 and R; there are no boundary layers. In
the limits (1.1) and (1.2) of small viscous and ohmic dissipation, it is readily shown
that

ω ∼ π
[
1− ην + ηλ

2ηκ

]
, (3.2)

R ∼ ηκ(ην + ηλ)
π2 + a2

a2

[
(π2 + a2)2 +

π2

η2
κ

]
, (3.3)

which are consistent with C61, Chap. 3, (230) and (231).
If ηκ � 1 (where as usual ην/ηκ and ηλ/ηκ are nevertheless small), (3.2) and (3.3)

agree with (241) of C61, Chap. 3 for the preferred mode

ac ∼ π2/3

21/6η
1/3
κ

, Rc ∼ π2 (ην + ηλ)

ηκ
. (3.4)

When ηκ � 1, (3.3) gives

ac ∼ π√
2
, Rc ∼ 27π4

4
ηκ(ην + ηλ). (3.5)

If in addition Pm � 1, the critical wavenumber and the critical value of Chan-
drasekhar’s Rayleigh number Rc/ηνηκ are identical to those of the non-magnetic
Bénard problem for stress-free boundaries (C61, § 15a), but that solution is steady
whereas the solution here oscillates with frequency (3.2). Even the present simple
model highlights the dangers of doing the obvious, namely arguing that, because
Pr � 1 and Pq � 1 in the solar convection zone, ν and λ can be set to zero at the
outset; see for example equations (17)–(19) of Musman (1967), equations (11)–(13) of
Savage (1969), and equations (1)–(3) of Parker (1974). Obviously the result of setting
ν = λ = 0 is to obtain an Rc that is independent of ν and λ, although it is clear from
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ηκ ac Rc/ηκ(ην + ηλ)

0.01 8.61 1.198× 105

0.10 3.70 2.654× 103

1.00 2.27 686.7
5.00 2.22 658.7

Table 1. Some results for Case A.

104

R
η

κ 
(η

ν
 + ηλ)

103
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η κ
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η κ
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00
η κ

 =
0.1

Figure 1. The neutral curves for thermal Alfvén waves in Case A when Pm = 1 for various values
of ηκ. The critical Rayleigh number Rc is scaled.

(3.3)–(3.5) that this conclusion is questionable. We shall find that the same difficulty
arises in Cases B–D also.

Some results for Case A at intermediate values of ηκ are given in table 1.
Figure 1 shows the Rc given by (3.3) as a function a for three values of ηκ.

4. Case B: solid, perfectly conducting walls
4.1. Undamped Alfvén waves

In order that convective motions be dominantly Alfvén waves, it is necessary that
both diffusion parameters, ην and ηλ, be sufficiently small: ην � 1 and ηλ � 1. This
suggests that it is appropriate to express the mainstream solution (as we shall call the
solution outside the boundary layers) through double expansions in ην and ηλ of the
form

R =
∑
n=0

∑
k=0

ηnνη
k
λ Rnk, ω =

∑
n=0

∑
k=0

ηnνη
k
λ ωnk, φ =

∑
n=0

∑
k=0

ηnνη
k
λ φnk, (4.1a–c)

and similarly for h and θ. Because of the effects of the Hartmann layers on the walls,
however, these expansions are not tenable beyond n = 1 and k = 1; indeed, (4.1) itself
is already incorrect in Case D (see § 6). It should be stressed that, even though both
ην and ηλ tend to zero, the solutions depend on the relative rate with which they do
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so, i.e. on the magnetic Prandtl number Pm. How many and which terms are required
in (4.1) depends on the magnitude of Pm.

Substituting expansions (4.1) into equations (1.13)–(1.15), we find that, to leading
order for the mainstream,

iω00(D
2 − a2)φ00 = (D2 − a2)Dh00 − R00θ00, (4.2a)

iω00h00 = Dφ00, (4.2b)[
ηκ(D

2 − a2)− iω00

]
θ00 = −a2φ00. (4.2c)

That the differential order of equations (4.2a–c) is less than that of (1.13)–(1.15) is
not surprising, as we expect thin boundary layers at the walls in which φ and h
adjust to the boundary conditions and in which Dφ and Dh are large, reflecting
the high vorticity and high electric current densities existing in these layers. What is
more surprising is that, despite omitting D2 terms from both (1.13) and (1.14), the
differential order of (4.2a–c) is still six, i.e. only two less than that of (1.13)–(1.15).
This means that φ00, h00 and θ00 must obey three of the four conditions derived in § 2
at each boundary, but which three? The answer is obvious only here where by (4.2b)
h00 and Dφ00 vanish together at the walls:

φ00 = θ00 = h00 = 0 at z = ± 1
2
. (4.3a–c)

At the leading order, described by (4.2)–(4.3), there are no diffusive effects, and no
buoyancy source is required to maintain the disturbance. It follows that R00 = 0.
Consequently, (4.2c) decouples from (4.2a, b), leaving behind a fourth-order equation
that governs undamped Alfvén waves:

(D2 + ω2
00)(D

2 − a2)φ00 = 0. (4.4)

There are two distinct families of solutions: even modes with symmetry
φ00(z) = φ00(−z) and odd modes with symmetry φ00(z) = −φ00(−z). For the even
modes, we have, from (4.4) and condition (2.8a), (for ω00 6= ±ia)

φ00 =
cosω00z

cos 1
2
ω00

− cosh az

cosh 1
2
a
, (4.5a)

h00 = i

(
sinω00z

cos 1
2
ω00

+
a sinh az

ω00 cosh 1
2
a

)
. (4.5b)

The boundary condition (4.3c) gives the dispersion relationship for ω00:

ω00 tan 1
2
ω00 + a tanh 1

2
a = 0, (4.6)

which has real roots (and the spurious roots ω00 = ±ia ruled out above). The modes
given by (4.5a) have an even number of zeros in − 1

2
< z < 1

2
. To the φ00 having no

zeros in the interval there corresponds the smallest ω00, which is shown as a function
of a in figure 2; for this mode

ω00 → π as a→∞, ω00 → 2π as a→ 0, (4.7a,b)

facts that will be useful in § 6.2. It is found below that the marginal state (the most
unstable convection mode) always corresponds to the smallest ω00. We shall later
focus on this and also ignore modes from the odd family below.
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6.5

6.0

5.5

5.0

4.5

4.0

3.5

x00

2.0 4.0 6.0 8.0 10.0

a

Case C

Case B

Figure 2. Solution of the dispersion relations for undamped Alfvén waves in Cases B and C.
The solution having the smallest frequency ω00 is shown as a function of a. This is also the
mode associated with the most easily excited mode of magnetoconvection, i.e. the mode having the
smallest Rayleigh number. Modes B and C are also relevant to cases considered in § 6.3 and § 6.4,
respectively.

For the second family having an odd number of zeros in − 1
2
< z < 1

2
,

φ00 =
sinω00z

sin 1
2
ω00

− sinh az

sinh 1
2
a
, (4.8a)

h00 = −i

(
cosω00z

sin 1
2
ω00

− a cosh az

ω00 sinh 1
2
a

)
, (4.8b)

and

ω00 cot 1
2
ω00 − a coth 1

2
a = 0. (4.9)

The structure of the solutions is given by (4.5) and (4.8). The first terms on their
right-hand sides arise from the vanishing of the first operator (D2 + ω2

00) in (4.4).
From the scaling (1.7) it is clear that these represent Alfvén waves of frequency ω00.
These waves are not however the transverse, xy-independent Alfvén waves of classic
MHD. They depend on x and y and, to satisfy (4.3a, c), they must be accompanied by
gradients in the perturbed pressure, p, which, because the fluid is incompressible, is
transmitted with infinite acoustic speed and therefore obeys ∇2p = 0. This gives rise
to the second terms on the right-hand sides of (4.5) and (4.8), which are associated
with the vanishing of the second operator (D2 − a2) in (4.4). Such non-transverse
waves are sometimes termed ‘slow waves’ or even ‘slow magnetosonic waves’.

There is a second dissimilarity between (4.5) and (4.8) and the classic Alfvén wave.
After substituting (4.5a) or (4.8a) into (4.2c) and solving subject to (4.3b), we determine
θ00, and this is non-zero. This shows that the perturbed field and flow are associated
with a perturbed temperature that arises from the advection and diffusion of the
mean temperature profile. To highlight this difference from the classic Alfvén wave,
we shall call the disturbances in our convecting layer ‘thermal Alfvén waves’. They
are analogous to the thermal inertial waves we studied previously for the rotating
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Bénard layer (Zhang & Roberts 1997). They are not similar to the thermally driven
Alfvén waves studied by Musman 1967, Savage (1969) and Parker (1974), which are
thermally damped even at leading order; see equations (2), (3) and (27) of Musman,
equations (1) and (17) of Savage, and equations (20), (35) and (37) of Parker.

4.2. Thermal Alfvén waves

At leading order, then, the stability issue does not arise and R00 = 0. Undamped
Alfvén waves propagate across − 1

2
< z < 1

2
, carrying a passive, thermally created,

density stratification with them. To solve the stability problem, it is necessary to
take the mainstream solution beyond (4.5), by including more terms in the expansion
(4.1). Viscous and ohmic dissipation of the Alfvén waves arises in the higher-order
problem, and can only be offset by the thermal buoyancy provided by a sufficiently
large Rayleigh number R.

The case Pm � 1. It is the size of the magnetic Prandtl number that determines
which additional terms are required for the stability problem. In this case, only one
additional term (n = 1, k = 0) is needed from our expansions (4.1). The corresponding
governing equations at this order are

(D2 − a2) (iω00φ10 −Dh10) = −R10θ00 + (D2 − a2)2φ00 − iω10(D
2 − a2)φ00, (4.10a)

iω00h10 −Dφ10 = −iω10h00. (4.10b)

When the Hartmann layers on the walls are analysed, it is readily seen that, to
leading order in the boundary layer expansions, the vertical flow and the vertical
magnetic field are independent of z, so that by conditions (2.8a) and (2.8d)

φ10 = h10 = 0 at z = 1
2
. (4.11a, b)

(For a general discussion about Hartmann boundary layers, see, for example, Roberts
1967.) In (4.11), z = 1

2
refers to the common edge of the boundary layer and the

mainstream, i.e. the conditions apply to the mainstream solution. (The corresponding
boundary conditions on z = − 1

2
are redundant because of the symmetry of the

solution with respect to z = 0.) At the order to which we are now working, the
Hartmann layers play no further role. It may however be worth recalling that, when
(as here) Pm � 1, the Hartmann layer resembles a viscous shear layer in which the
vorticity is large; when integrated across the layer, the vorticity becomes a surface
vorticity which is associated with a jump in the horizontal components of u across
the layer. In contrast, the integrated volume currents in the layer are negligible at
leading order, and the surface current to which these give rise when integrated across
the layer is also negligible; the jump in b can therefore be disregarded. The situation
is reversed when (as below) Pm � 1. The Hartmann layer then resembles a magnetic
diffusion layer across which the horizontal components of b suffer discontinuities
while those of u does not.

The temperature θ00 is no longer passive and in (4.10a) drives the Alfvén waves
against the viscously dominated dissipation. From (4.2c) together with (4.3b) and
(4.5a), we can determine θ00 uniquely:

θ00 =
a2

ηκΩ + iω00

[
cosω00z

cos 1
2
ω00

− iηκΩ

ω00

cosh(X + iY )z

cosh 1
2
(X + iY )

]
+

ia2 cosh az

ω00 cosh 1
2
a
, (4.12)
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where

Ω = ω2
00 + a2, X =

a√
2

(
1 +

√
1 +

ω2
00

a4η2
κ

)1/2

, Y =
ω00√
2aηκ

(
1 +

√
1 +

ω2
00

a4η2
κ

)−1/2

.

The inhomogeneous equations (4.10) in general have no solution unless the associ-
ated solvability condition, which determines the marginal state of magnetoconvection,
is satisfied. We have used two different ways to obtain the solvability condition. The
first one was to solve (4.10) explicitly. Eliminating two undetermined integral con-
stants by demanding that the two boundary conditions (4.11) are satisfied yields the
solvability condition. The second method is to multiply (4.10a) by φ∗00, the complex
conjugate of φ00, multiply (4.10b) by h∗00, sum the results, and then integrate across
the layer. Although the same answer is obtained, we found that the first approach is
the simpler.

The form of the leading-order solutions, φ00 and h00, on the right-hand side of
equations (4.10a, b) suggests that the general solution for φ10 can be written as

φ10 = A
cosh az

cosh 1
2
a

+ B
cosω0z

cos 1
2
ω0

− C1

z sinh az

cosh 1
2
a
− C2

z sinω0z

cos 1
2
ω0

− C3

cosh(X + iY )z

cosh 1
2
(X + iY )

. (4.13)

While A and B are constants of integration to be determined by the boundary
conditions, coefficients C1, C2 and C3 are determined by direct substitution as

C1 =
R10a

2Ω
, C2 =

i

2

(
R10a

2

Ω(ηκΩ + iω00)
− Ω − 2iω10

)
, C3 =

iR10a
2η3
κΩ

ω0(ηκΩ + iω00)2
.

With φ10 given by (4.13), h10 can be obtained directly from equation (4.10b). The
satisfaction of the two boundary conditions (4.11) leads to a complex solvability
condition from which the real part and imaginary part yields two equations. One
determines R10 at the onset of instability in the form of a thermal Alfvén wave, and
the other makes a small correction to the Alfvén wave frequency:

R10 =
Ω

ηκa2

(
Ω+

[
ω2

00 + aT (aT − 2)
]

ω2
00 + aT (aT − 2) + 4Ω+η2

κΩGr

)
, (4.14)

ω10 = −ω00R10

2Ω

(
a2 + aT (2− aT )

ω2
00 − aT (2− aT )

+
a2

Ω+

− 4a2η3
κΩ

2Gi

ω00

[
ω2

00 − aT (2− aT )
]) , (4.15)

where

Gr = ([Ω−X + 2ω00ηκΩY ] sinhX + [2ω0ηκΩX − Ω−Y ] sinY − aTΩ−C)/Ω2
+C,

Gi = ([Ω−Y − 2ω00ηκΩX] sinhX + [2ω0ηκΩY + Ω−X] sinY + 2Ωω00aTηκC)/Ω2
+C,

Ω± = Ω2η2
κ ± ω2

00, T = tanh 1
2
a, C = coshX + cosY .

It may be noticed that only one dissipation parameter, ηκ, appears in equation
(4.14). Evidently, if the leading-order solution is to be an undamped Alfvén wave,
ηκ must be sufficiently large compared with ην , i.e. Pr � 1. It is also clear that the
minimization of the Rayleigh number R10 over the wavenumber a using expressions
(4.14) and (4.6) has to be carried out numerically. Our evaluations of R10(a, ηκ)
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ηκ ac Rc/Pr ω00

0.01 11.9 18.1 3.75
0.10 5.6 65.4 4.50
1.00 3.3 1.86× 103 5.22
5.00 3.1 4.37× 104 5.30

Table 2. Typical examples for Case B, Pm � 1.

ηκ ac Rc/Pr ω00

0.01 12.9 24.38 3.70
0.10 5.6 101.68 4.50
1.00 3.0 2.562× 103 5.43
5.00 2.8 5.903× 104 5.43

Table 3. Typical examples for Case B, Pm � 1.

strongly suggest that, for any given value of ηκ, there always exists a most unstable
mode that is characterized by a minimum Rayleigh number, Rc = (R10Pr)min and

a corresponding critical wavenumber ac. Although we expect that ac ∼ η−1/2
κ when

ην � ηκ � 1, the expression (4.14) cannot be significantly simplified in this case. When
ηκ � 1, we expect an optimal balance between the dissipation of the thermal Alfvén
waves and the driving buoyancy at an ac = O(1) wavenumber. In this case, (4.14) can
be substantially simplified. The leading-order asymptotic expression for R10 may be
written as

R10 ∼ ηκΩ
3
[
ω2

00 + aT (aT − 2)
]

a2
[
ω2

00 + aT (aT − 2)
]

+ ω2
00(ΩF1 + 4aF2)

for ηκ →∞, (4.16)

where

F1 =
1

4

[
−aT 3 + T 2 +

(
a+

2

a

)
T − 1

]
, F2 =

a

2
(1− T 2) + T .

Also (4.15) shows that

ω10 → 0 as ηκ →∞. (4.17)

Table 2 gives several typical examples calculated from (4.6) and (4.14). This table
shows that ac = 3.3 and Rc/ηλην = 1860 for ηκ = 1. This may be compared with the
asymptotic result ac = 3.1 and Rc/ηλην = 1745 given by (4.16).

The case Pm � 1. In this case, magnetic diffusion is dominant and the additional
term needed in expansions (4.1) is (n = 0, k = 1) and not (n = 1, k = 0). The
corresponding governing equations at this order are

(D2 − a2) (iω00φ01 −Dh01) = −R01θ00 − iω01(D
2 − a2)φ00, (4.18a)

iω00h01 −Dφ01 = −iω01h00 + (D2 − a2)h00, (4.18b)

which are also subject to the boundary conditions (4.11). Further knowledge of the
Hartmann layer is not required in solving the stability problem at this order. By
carrying out an analysis similar to that of the previous subsection, we obtain

R01 =
Ω

ηκa2

(
Ω+

[
ω2

00 + aT (aT + 2)
]

ω2
00 + aT (aT − 2) + 4Ω+η2

κΩGr

)
, (4.19)
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Figure 3. The neutral curves for thermal Alfvén waves in Case B when Pm = 1 for various values
of ηκ. The critical Rayleigh number Rc is scaled. The asymptotic limit ηκ � 1 is represented by the
dashed line.

while the expression for ω01 is the same as that for ω10 except that R10 is replaced by
R01. The asymptotic result replacing (4.16) is

R01 ∼ Ω3ηκ
[
ω2

00 + aT (aT + 2)
]

a2
[
ω2

00 + aT (aT − 2)
]

+ ω2
00(ΩF1 + 4aF2)

for ηκ →∞, (4.20)

and again ω01 → 0 in the same limit.

Table 3 gives several typical examples calculated from (4.6) and (4.19). This table
shows that ac = 3.0 and Rc/ηλην = 2562 for ηκ = 1. This may be compared with the
asymptotic result ac = 2.8 and Rc/ηλην = 2353 given by (4.20).

The case Pm = O(1). Now both viscous and magnetic diffusion are important, the
(n = 0, k = 1) and (n = 1, k = 0) terms are both needed in expansion (4.1). The final
result is simply given by

R = R10ην + R01ηλ, ω = ω00 + ω10ην + ω01ηλ. (4.21a, b)

Several typical examples for Pm = 1 are shown in figure 3 for different values of ηκ
together with the asymptotic result ηκ � 1. At ηκ = 0.1, the most unstable convection
mode is ac = 5.6 with Rc/ηληκ = 1.67×104. When ηκ is increased to 1.0, ac diminishes
to ac = 3.1 and Rc/ηληκ = 4.44× 103; the asymptotic results for ηκ → ∞ are ac = 3.0
and Rc/ηληκ = 2.97×103. It is relevant to § 6.2 below to observe that the leading-order
asymptotic result for ηκ →∞, shown by the dashed line in figure 3, captures all the
main features of the instability for moderate values of ηκ.

In summary, when the walls of the fluid layer are solid, perfect conductors, the
Hartmann boundary layers on the walls play no role in determining ac and Rc
to leading order. The magnetoconvective motions are thermal Alfvén waves for
any assigned values of Pm and ηκ, provided only that ην and ηλ are sufficiently
small.
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5. Case C: the exterior of the layer is a vacuum
5.1. Undamped Alfvén waves

This case for stress-free, perfectly insulating walls is somewhat different from Case
B. The discontinuities in Dφ and Dh across the Hartmann layers now play a role
in determining R. The structure of the layers determines in a unique way how the
discontinuities are related. When the exterior of the fluid layer is free space or is a
light, perfectly insulating fluid, the zero stress conditions introduce Hartmann layers
that require

〈Dh〉 = −ην〈D2φ〉, at z = ± 1
2
; (5.1a)

see, for example, Morley & Roberts (1997). In (5.1a), 〈Q〉 denotes the jump in a
quantity Q from one side of the layer to the other. The physical content of (5.1a) is
that, since the Hartmann layer is infinitely thin and has no mass, the net (viscous plus
magnetic) stress acting across its edges must vanish. It is significant that the Hartmann
layer thickness is of order (ηνηλ)

1/2 so that within the boundary layer the D2 terms in
(4.2) are of order 1/ηνηλ, i.e. large compared with both the associated a2 terms (except
for wavenumbers too large, a > O(ηνηλ)

−1/2, to be of interest here) and the iω/ην and
iω/ηλ terms, since ω = O(1). These terms can therefore be neglected to leading order.
This means that the Hartmann layer jump condition is, to leading order, the local
and t-independent (5.1a), even though the solution is unsteady. According to (5.1a),
conditions (2.9c) and (2.9d) place a single demand on the mainstream:

Dh± ah+ D2φ = 0 at z = ± 1
2
. (5.1b)

The leading-order equations (n = k = 0) are again (4.2a–c), but their solutions are
subject to different boundary conditions, which by (2.9a), (2.9b) and (5.1b) are

φ00 = θ00 = Dh00 ± ah00 = 0 at z = ± 1
2
. (5.2a–c)

Again R00 = 0, and φ00 and h00 are given by (4.5) and (4.8), which automatically obey
(5.2a). The dispersion relations obtained from (4.5b), (4.8b) and (5.2c) have real roots.
The frequencies of the undamped Alfvén waves are solutions of

ω00(ω00 + a tan 1
2
ω00) + a2(1 + tanh 1

2
a) = 0, (5.3a)

for the even modes, and

ω00(ω00 − a cot 1
2
ω00) + a2(1 + coth 1

2
a) = 0, (5.3b)

for the odd modes. (The solutions ω00 = ±ia are spurious.) The most interesting
solution is again the smallest root of (5.3a); it is displayed in figure 2, where it is seen
to be quite different from the ω00 obtained in Case B. In this case

ω00 → π as a→ 0 and as a→∞, (5.4a, b)

facts that will be useful below. It is found below that the marginal state always
corresponds to the smallest ω00. We shall later focus on this and also ignore modes
from the odd-φ family.

5.2. Thermal Alfvén waves

The case Pm � 1. We shall keep this section brief as the analysis is similar to that of
Case B. The stability problem for Pm � 1 again involves the term (k = 0, n = 1) in
expansion (4.1). While the governing equations and the boundary condition (4.11a)
for φ10 are exactly the same as in Case B, the boundary condition (5.1b) on h10 is
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ηκ ac Rc/Pr ω00

0.01 10.2 14.6 3.46
0.10 4.2 35.7 3.77
1.00 2.3 7.50× 102 3.84
5.00 2.2 1.76× 104 3.83

Table 4. Typical examples for Case C, Pm � 1.

quite different from (4.11b). We have

φ10 = Dh10 + ah10 + D2φ00 = 0 at z = 1
2
. (5.5a, b)

The real and imaginary parts of the solvability condition give rise to the Rayleigh
number and a small correction to the frequency of the undamped Alfvén wave at the
onset of convection:

R10 =
ΩΩ+η

−1
κ

[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )− 4ω2
00

]
a2
[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )
]

+ 4a2Ωη2
κ(aΩ+Gr + 2ω2

00ΩΩ
−1
+ )

, (5.6a)

ω10 = − 2a2ω00R10

(2 + a)ω2
00 − 2a2 + aω2

00W
2 − a2T

{
4 + a+ T (2− aT )

4Ω

+
ω2

00(2 + a+ aW 2)− 2a2(1 + T )

4ΩΩ+

− η3
κΩ

ω00

[
ω00Ω−
ηκΩ

2
+

+ aGi

]}
, (5.6b)

where W = tan 1
2
ω00.

The physically realizable solution corresponds to the minimum Rayleigh number
Rc = (PrR10)min, which is obtained numerically. Our calculation, in which we use (5.3a)
to find ω00 for a given a and then use (5.6a) to obtain R10, indicates that there always
exists a critical convection mode for any given non-zero ηκ. Several typical examples
are given in table 4. The asymptotic expression for R10 as ηκ →∞ is

R10 ∼ ηκΩ
3
[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )− 4ω2
00

]
a2
[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )
]

+ ω2
00

[
aΩF1 + 4a2(F2 + 2)

] , (5.7)

and ω10 → 0 in the same limit. The minimization of R10 over a in (5.6) gives rise to
the critical mode ac = 2.2, Rc/ηκην = 703, which again is similar to the values of ac
and Rc for ηκ = 1 shown in table 4. The critical wavenumber is much smaller than in
Case B.

The case Pm � 1. We now need the term (n = 0, k = 1) in expansions (4.1). The
governing equations and the boundary condition for φ01 are the same as in Case B.
But the boundary conditions replacing (5.5) are

φ01 = 0, Dh01 + ah01 = 0 at z = 1
2
. (5.8a, b)

Similar analysis as before leads to

R01 =
ΩΩ+η

−1
κ

[
ω2

00(2 + a+ aW 2) + 2a2(1 + T )
]

a2
[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )
]

+ 4a2Ωη2
κ(aΩ+Gr + 2ω2

00ΩΩ
−1
+ )

, (5.9)

while the expression for ω01 is the same as (5.6b) with R01 replaced by R10. The
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ηκ ac Rc/Pr ω00

0.01 11.0 17.47 3.44
0.10 4.3 48.84 3.76
1.00 2.2 1.050× 103 3.83
5.00 2.2 2.466× 104 3.83

Table 5. Typical examples for Case C, Pm � 1.
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Figure 4. The neutral curves for thermal Alfvén waves in Case C when Pm = 1 for various values
of ηκ. The critical Rayleigh number Rc is scaled. The asymptotic limit ηκ � 1 is represented by the
dashed line.

asymptotic expression of R01 for ηκ →∞ is

R01 ∼ ηκΩ
3
[
ω2

00(2 + a+ aW 2) + 2a2(1 + T )
]

a2
[
ω2

00(2 + a+ aW 2)− 2a2(1 + T )
]

+ ω2
00

[
aΩF1 + 4a2(F2 + 2)

] , (5.10)

and ω01 → 0 in the same limit. Our calculations with (5.9) again suggests that there
always exists a most unstable mode for any given ηκ. Some typical examples are
given in table 5. When ηκ →∞, the asymptotic expression (5.10) gives ac = 2.2 and
Rc/ηληκ = 984, which may be compared with the ηκ value in the table.

The case Pm = O(1). Here both the terms (n = 0, k = 1) and (n = 1, k = 0) are
required. The marginal state is simply described by

R = R10ην + R01ηλ, ω = ω00 + ω10ην + ω01ηλ. (5.11a, b)

A number of examples are shown in figure 4 for different values of ηκ together
with the asymptotic result for ηκ →∞ for Pm = 1. For ηκ = 0.1, the most unstable
mode is ac = 4.3 with Rc/ηληκ = 8.46× 103. When ηκ is increased to 1.0, the critical
wavenumber ac diminishes to ac = 2.3 and Rc/ηληκ = 1.80× 103. For asymptotically
large ηκ, we obtain Rc/ηληκ = 1.56× 103 and ac = 1.8.

In summary, when the more realistic boundary conditions – stress-free, perfectly
insulating walls – apply, the Hartmann layers play a role in determining ac and Rc
at leading order. Nevertheless, to leading order the magnetoconvective motions are



Thermal generation of Alfvén waves 217

again thermal Alfvén waves for any assigned values of Pm and ηκ, provided only that
ην and ηλ are sufficiently small.

6. Case D: solid insulating walls
6.1. Undamped Alfvén waves

Case D is quite different from both Cases B and C due to the greater significance
of dissipation in the mainstream. Nevertheless, the role of the Hartmann layers is
central and should be clarified at the outset.

The Hartmann jump condition is

〈Dh〉 = ∓P 1/2
m 〈Dφ〉 at z = ± 1

2
. (6.1a)

According to (6.1a), conditions (2.10c) and (2.10d) place a single demand on the
mainstream:

Dh± ah± P 1/2
m Dφ = 0 at z = ± 1

2
, (6.1b)

from which it follows that

if Pm = ∞, Dφ = 0 at z = ± 1
2
, (6.1c)

and

if Pm = 0, Dh± ah = 0 at z = ± 1
2
. (6.1d)

A parallel exists here with the simpler situation of the attenuation of plane Alfvén
waves (i.e. a = 0 waves) trapped between two boundaries (Hide & Roberts 1962;
Roberts 1972). Here (6.1c) corresponds to perfectly conducting boundaries and (6.1d)
to insulating boundaries. As Hide & Roberts remarked, when viscous and ohmic
losses in the fluid are ignored, as we do to leading order, the waves are not damped in
either of these extremes; they are attenuated by the boundaries only in intermediate
cases where Pm = O(1). In a similar way here, when Pm = O(1), the Hartmann layers
remove energy from the Alfvén waves even at leading order. The waves can be
maintained only if buoyancy makes good the energy loss also at that order, and this
requires that R00 = O(1). It is not difficult to solve such Pm = O(1) cases numerically.
At leading order, the mainstream obeys (4.2) as before, and these equations must be
solved subject to conditions (2.10a), (2.10b) and the Hartmann jump condition (6.1b).
The condition that Im(ω00) = 0 then determines R00 and the wave frequency Re(ω00).
We shall not carry out such a program here, mainly because it is not thematic to the
objectives we set ourselves in § 1. Our aim is to consider situations in which the waves
are non-dissipative at leading order, and in which R is determined at the next order.
This can be done in the two limiting cases analogous to (6.1c) and (6.1d), Pm � 1 and
Pm � 1, in which viscous losses and ohmic losses respectively dominate. Analytical
expressions similar to those derived in Cases B and C are found. When Pm � 1, the
leading-order solution, which describes undamped Alfvén waves, is exactly the same
as in Case B; when Pm � 1, the leading-order solution is identical to that of Case C.
The relevant ω00 are shown in figure 2.

We now turn to the role of dissipation in the mainstream. At first sight one is
tempted to say that this must be negligible compared with the dissipation rate per
unit area integrated through the Hartmann layers, because in dimensionless units
they are respectively ηλ/` and ηλ/δH ohmically and ην/` and ην/δH viscously. If `,
the scale of convection in the mainstream, is O(1) then it is indeed true that the
dissipation in the Hartmann layer is all important. It transpires, however, that when
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one retains that dissipation alone, the critical wavenumber for convection is infinite;
see below. In fact, `� 1 for the critical mode, and dissipation in the mainstream is
as important as it is in the Hartmann layers, and both must be retained if ac and
Rc is to be determined. In the following, we first establish that ac = ∞ if mainstream
dissipation is ignored, and we then modify the calculation of R by including that
dissipation, again as a perturbation of the leading-order dissipationless waves. As
usual, this procedure is valid only if ην � 1 and ηλ � 1.

The results of our analysis of Cases B and C indicate clearly that the asymptotic
limit for ηκ → ∞ captures the main features of the instability even for ηκ as small as
1; this is also evident from figures 3 and 4. To simplify our analysis for Case D, we
concentrate on the large-ηκ limit, in which the ω00 term in (4.2c) may be neglected to
leading order.

6.2. Thermal Alfvén waves: Pm � 1

It has been emphasized in this paper that, to make a thermal Alfvén wave the
most unstable mode of magnetoconvection, ην and ηλ must be small. Because Pm ≡
ην/ηλ � 1 here, we may choose ην and P

−1/2
m as the two small parameters for a double

expansion of the solutions, replacing (4.1) by

R =
∑
n=0

∑
k=0

P−n/2m ηkν Rnk, ω =
∑
n=0

∑
k=0

P−n/2m ηkν ωnk, φ =
∑
n=0

∑
k=0

P−n/2m ηkν φnk.

(6.2a–c)

On substituting (6.2) into (1.13)–(1.15) and expanding the relevant boundary con-
dition in a similar way, we find that the leading-order (k = 0, n = 0) problem is the
same as in Case B; see figure 2 for the most significant ω00.

The governing equations for the (n = 1, k = 0) problem are

(D2 − a2) (iω00φ10 −Dh10) = −R10θ00 − iω10(D
2 − a2)φ00, (6.3a)

iω00h10 −Dφ10 = −iω10h00, (6.3b)

which are subject to the boundary conditions

φ10 = 0, Dφ10 + Dh00 + ah00 = 0 at z = 1
2
. (6.4a, b)

It follows that (4.12) can be replaced by the much simpler expression

θ00 =
a2

ηκΩ

[
cosω00z

cos 1
2
ω00

−
(
TΩ

4a
+ 1

)
cosh az

cosh 1
2
a

+
Ω

2a

z sinh az

cosh 1
2
a

]
. (6.5)

By carrying out the analysis for the (n = 1, k = 0) problem, we obtain ω10 = 0 in a
by now familiar way; see (4.17). We also find that

R10 =
16ηκaΩ

3

Q0 + Q1T + Q2T 2 + Q3T 3
, (6.6)

where

Q0 = −aω4
00 + 11a3ω2

00,

Q1 = (a2 + 2)ω4
00 + a2(a2 + 18)ω2

00 − 8a4,

Q2 = aω4
00 − 7a3ω2

00 + 4a5, Q3 = −a2ω2
00Ω.

The R10 given by (6.6) is a monotonically decreasing function of a; by (4.7), we
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have R10/ηκ = O(a−2) as a→ 0 and

R10/ηκ → π2 as a→∞. (6.7)

In consequence, the Rayleigh number R10 has no minimum for a = O(1) for any ηκ.
It is also plausible that the minimum lies in the range a� O(1). To determine this,
additional terms in the expansion (6.2) are necessary because, for a sufficiently large
wavenumber a, the term (n = 0, k = 1) in the expansion becomes important. More

precisely, when a = O(δ−3/4η
1/2
λ ), where δ = (ηνηλ)

1/2 is the thickness of the Hartmann
layer, the next-order term (n = 0, k = 1) becomes so significant that it must be
included. (The Hartmann jump condition (6.1a) is valid as long as a� O(δ−1), and
ac satisfies this requirement.)

The governing equations for the (n = 0, k = 1) problem are given by (4.18a, b), but
the boundary conditions are different from those considered in § 4. We now have

φ01 = Dφ01 = 0 at z = 1
2
. (6.8)

Since ηλ = P−1
m ην , the ηλ term in equation (1.10) would become important only in the

higher-order (n = 2, k = 1) approximation and can therefore be ignored here. The
Rayleigh number R at the onset of instability is found to be

R ≡ P−1/2
m R10 + ηνR01 =

4ηκaΩ
3
[
4P
−1/2
m + (ω2

00 + aT (aT − 2))ην

]
Q0 + Q1T + Q2T 2 + Q3T 3

. (6.9)

There are two main sources of ohmic dissipation: one arises from the Hartmann

layers (the P
−1/2
m term) and the other is the result of viscous losses in the mainstream

(the ην term). Our numerical calculation with (4.5a) and (6.9) suggests that the
critical convection mode is, for any non-zero ην , a thermal Alfvén wave. When

ην > O(P
−1/2
m ), we have ac = O(1). When the Hartmann layer dissipation is dominant

(i.e. when ην/P
−1/2
m � 1), the critical wavenumber is large, of order δ−1η

2/3
λ , where

δ = (ηνηλ)
1/2 is the thickness of the Hartmann layer. In this case, Rc takes the limiting

value (6.7), although the approach to the limit is slow, since Rc deviates from (6.7)

not by the order of the small parameter ην/P
−1/2
m but by a term proportional to its

1
3

power. We show typical examples in figure 5 for different values of P
1/2
m ην , where

the dashed line represents the asymptotic limit P
1/2
m ην →∞. For ην = P

−1/2
m , equation

(6.9) gives ac = 3.1 and Rc/ηνηκ = 1974.

6.3. Thermal Alfvén waves: Pm � 1

In this case, ηλ and P
1/2
m are the natural small parameter for the double expansions:

R =
∑
n=0

∑
k=0

Pn/2
m ηkλ Rnk, ω =

∑
n=0

∑
k=0

Pn/2
m ηkλ ωnk, φ =

∑
n=0

∑
k=0

Pn/2
m ηkλ φnk. (6.10a–c)

The leading-order (k = 0, n = 0) solution is exactly the same as in Case C, and the
resulting ω00 is shown in figure 2. At the next order (n = 1, k = 0) the solution is
governed by equations (6.3), but the boundary conditions demand that

φ10 = 0, Dh10 + ah10 + Dφ00 = 0 at z = 1
2
. (6.11a, b)

A similar analysis to that of § 6.2 again gives ω10 = 0 and also

R10 =
16ηκω

2
00Ω

3

a(T0 + T1T + T2T 2 + T3T 3)
, (6.12)
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Figure 5. The neutral curves in Case D when Pm � 1 for various values of P
−1/2
m η−1

ν . The critical

Rayleigh number Rc is scaled. The dashed curve applies when P
1/2
m ην →∞.

where

T0 = 3aω4
00 + a2(19a+ 40)ω2

00 + 4a4(a− 2),

T1 = (a2 + 2)ω4
00 + a2(a2 + 8a+ 18)ω2

00 + 8a4(a− 1),

T2 = aω4
00 − 7a3ω2

00 + 4a5, T3 = −a2ω2
00Ω.

Once more R10 is a monotonically decreasing function of a, and tends to the limiting
value (6.7) as a→∞. The critical mode does not lie in the range a = O(1) for any
ηκ. This obstacle can again be overcome by including the (n = 0, k = 1) terms in the
expansions; these are significant when a is sufficiently large. They are governed by
(4.10a, b), but are subject to different boundary conditions, namely

φ01 = Dh01 + ah01 = 0 at z = 1
2
. (6.13)

It is found that ω10 = 0 and that the Rayleigh number at the onset of magnetocon-
vection is given by

R ≡ P 1/2
m R10 + ηλR01

=
4ηκΩ

3
(

4ω3
00P

1/2
m + [aω2

00(4 + a) + Ω(Ω − 2a) + 2a2(Ω − a)T + a4T 2]ηλ

)
aω00(T0 + T1T + T2T 2 + T3T 3)

.

(6.14)

As before there are two main sources of dissipation: those associated with the

Hartmann layers (P
−1/2
m term) and the ohmic losses in the interior (the ηλ term).

Our calculations based on (5.3a) and (6.14) indicate that a critical convection mode

exists for all non-zero ηλ. When ηλ > O(P
1/2
m ), it is found that ac = O(1). When the

Hartmann layer dissipation dominates (ηλ � O(P
1/2
m )), the critical wavenumber is

large: ac = O(δ−3/5η
−2/5
ν ). The approach to the limit (6.7) is even slower than in § 6.2;

Rc deviates from (6.7) not by the order of the small parameter P
1/2
m /ηλ but by a term
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Figure 6. The neutral curves in Case D when Pm � 1 for various values of P
1/2
m η−1

λ . The critical

Rayleigh number Rc is scaled. The dashed curve applies when P
1/2
m η−1

λ → 0.

proportional to its 1
5
-power. Several examples are shown in figure 6, where the dashed

line is for the asymptotic limit P
1/2
m /ηλ → 0. When ηλ = P

1/2
m , equation (6.14) gives

ac = 2.7 with Rc/ηληκ = 291.

7. Concluding remarks
In this paper, we have clarified several significant issues in one of the classical

problems of MHD: time-dependent convection in an electrically-conducting fluid
layer in the presence of a vertical magnetic field (Chandrasekhar 1961). We have
found that, provided ην and ηλ are sufficiently small, the solutions are, at leading
order, undamped Alfvén waves that merely advect the isothermal surfaces without
diffusion; we called these ‘thermal Alfvén waves’. In the next approximation, these
waves are lightly damped, and are sustained by weak thermal buoyancy. (In contrast,
the thermally excited Alfvén waves studied by Musman (1967), Savage (1969) and
Parker (1974) are strongly damped thermally, even at leading order.)

The theory we have developed has many points of similarity with that governing
oscillatory convection in a rapidly rotating Bénard layer when the Prandtl number
is small (e.g. Zhang & Roberts 1997). For example, when Pr = O(1), the rotational
constraint causes the horizontal scale of the preferred convection pattern to diminish
with increasing rotation; the concomitant increase in viscous dissipation causes the
critical Rayleigh number to grow. This does not, however, happen in the Pr → 0
limit, in which the preferred mode is oscillatory with ac = O(1). Since the convection
is predominantly an inertial wave that requires little buoyancy to preserve it from
viscous dissipation, the critical Rayleigh number is comparatively small. In a similar
way, when Pr = O(1) and Pm = O(1), the magnetic constraint causes the horizontal
scale of the preferred magnetoconvection mode to diminish with increasing applied
field, and the associated enhancement in the viscous and ohmic dissipation causes the
critical Rayleigh number to grow. We have found that, apart from two special sub-
cases of D, the preferred oscillatory convection that arises when ην and ηκ are small
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Pm � 1

Case ac ωc Rc/ην

A 2.2 3.14 658ηκ
B 3.1 5.30 1745ηλ
C 2.2 3.83 703ηκ
D ∞ 3.14 9.87PrP

−1/2
m

Pm � 1

Case ac ωc Rc/ηλ

A 2.2 3.14 658ηκ
B 2.8 5.43 2353ηλ
C 1.8 3.83 1560ηκ
D ∞ 3.14 9.87PrP

−1/2
m

Table 6. Summary comparing Cases A–D.

has a horizontal scale comparable with the depth of the layer (ac = O(1)). Since the
convection is predominantly an Alfvén wave that requires little buoyancy to preserve
it from viscous and ohmic dissipation, the critical Rayleigh number is comparatively
small. The two types of convection are however rather different mathematically. The
inertial wave arising at leading order in the rotating layer is governed by a second-
order equation. In contrast, the Alfvén wave excited here is not purely transverse
and is therefore associated with a pressure disturbance; the governing equation is
therefore of fourth order.

The principal theme of this paper is that boundary layers arise in all situations
except that of the illustrative Case A. In Case C, of free boundaries, the Hartmann
layers are weak and the results are qualitatively the same as in Case A, but not
quantitatively of course, as is seen in the results in table 6. Cases B and D are,
however, qualitatively completely different, and even depend on the diffusivities in a
different way from Cases A and C. It is inappropriate to summarize all the conclusions
of §§ 4 and 6 here and we merely focus in table 6 on the results for ηκ →∞ in Cases

A–C, and for ην + ηλ � P
−1/2
m in Case D.

Since Chandrasekhar wrote his book, magnetoconvection has been extensively
studied in various geometries and with both uniform and spatially varying applied
magnetic fields; the subject has been reviewed by Proctor & Weiss (1982), Fearn,
Roberts & Soward (1988), Hughes & Proctor (1988), Weiss (1991), Proctor (1992),
Nordlund et al. (1993) and Cattaneo (1994). Further relevant references can be found
in these surveys. We believe that the present paper represents the first study of
convection in the form of pure Alfvén waves, by which we mean waves that at
leading order are completely undamped; previous studies have linked convection
to thermally damped Alfvén waves, which required buoyant energy input at leading
order. An extension of the present study to the case where both rotation and magnetic
field act is under way. Other models where curvature effects are significant will also
be investigated in the future.

While at Exeter, P.H.R. was supported by the PPARC grant GR/K79493; while at
UCLA he is supported by NSF grants EAR97-25627 and ATM-12546. K.Z. is partly
supported by NATO Grant CRG 971513 and by a NERC grant. We thank these
fund granting agencies for giving us the opportunity of working together.
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